lowed by oxidation ${ }^{\text {i2 }}$ afforded $14 \alpha, 17 \alpha$-e thenopregn-4-enc-3,20-dione (III).

Progesterone analog III was assayed for autivity by the modified Clauberg Assay. ${ }^{13}$ Prelimmary results indicate that a total dose of 0.2 mg of III, administered by subcutancous injections, clicits an average response of 1.5^{+}; an equal dose of progesterone elicited a response of 0.5^{-}. Since III may be regarded as a liozen rotoner of a 17α-alkylprogesterone it scems of interest to note that its activity appears to be at least as greatas that reported for 17α-ethylprogesterone. ${ }^{14}$

Experimental Section ${ }^{17}$

$14 \alpha_{1} 17 \alpha$-Ethenopregn-5-en-3 β-ol-20-one Acetate (IId).-A sihntion of 6.0 g of I in 75 ml of benzene was heated at 160° muder ethylene at 3000 atm for 14 ir . Then the mixture was moled, filtered, and evaporated to dryness under reduced pressure. The residne was taken np in methanol and filtered to remive the insoluble polyethylenc. The residue, obtained by distilling the filtrate, was chromatographed over 125 g of acidwashed alumina (hexane-benzene). Crystallization from meth: inol gave IId, in a yield of $3.44 \mathrm{~g}(5.3 \%)$ as white rods: mp $140-142^{\circ}$; $v^{\mathrm{Namm}} 1730,1701 \mathrm{~cm}^{-1}$. The vinyl protons appeared in the nmir spectrim at $\delta 5.54$ (111), 6.11 .5 ($\mathrm{d}, \bar{J}=6 \mathrm{cps}$), and 6.16 ($1 . J=6 \mathrm{cps}$).
Anal. Caled for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3}$; C, 78.49; 11, 8.96. Found: C, 78.31 ; $\mathrm{H}, 9.12$.

14 $\alpha_{1} 17 \alpha$-Ethenopregn-5-en-3 3 -01-20-one (IIe).-After a mixwre of 1.44 g of IIa, 1.46 g of KOH , 6 ml of water, and 50 ml of cthanel had been stireed at roon temperature for 20 hr , it was concentrated under vacuun and then partitioned between ether and water. The ether extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and then evapurated to dryness under reduced pressure. Crystallization frim ethanol afforded $\mathrm{II} e$, in a yield of $1.12 \mathrm{~g}(87 \%)$, as white reedles: mp 196-198年; $\nu^{\text {Nuiol }} 3636,1675 \mathrm{~cm}^{-1}$. The nmr -pectrum showed a singlet at $\delta 2.18\left(21-\mathrm{CH}_{3}\right)$ and peaks at 5.42 , 6. 05 , ind 6.17 corresponding to the 6,15 , and 16 protons, respectively.

Anal. Calded for $\mathrm{C}_{33} \mathrm{H}_{3:} \mathrm{O}_{2}:$ C, 81.18; II, 9.47. Fomind: C, 80.11 ; $\mathrm{H}, 9.36$.

14 $\alpha, 17 \alpha$-Ethenopregn-4-ene-3,20-dione (III).--A A mixture of 1.52 g of $\mathrm{He}, 9.5 \mathrm{ml}$ of (rclohexanore, and 180 ml of toluene was arentroped inder a Dear-Stark head for 1.5 hr . Then, 1.68 g of aliminum intpropuxide was added and reflux continued for 1.5) In. After the resulting solntion had been cooled to roum (emperathre, it was washel with aqneous HCl , dried (MgSO_{4}), :and moncontated mider reduced pressire. The residne was Alommatogruphed bver 45 g of Wocimn neutral alminia, activity grade I. After impurities had been elnted by benzene-hexane roisures, frectionsentaining the product were eluted by 100 ml of trenzene followerl by 100 ml of 106 ethyl aceate in benzene. These fratims were crystallized from areme-hexane th allord

 and a singlet at 6.07 (C_{15} and C_{16} vinyl lividrogens).
 st.64; 11, 10.02.

Acknowledgments. - We are decply grateful to Dr. J. C. Kancer and to the E. I. Mu Pont de Nemours and Co. for carrying out the high pressure addition of ch hylene to T .

[^0]
Synthetic Bradykinin Analogs

Rtsearch Division, Parke, Davis \& Company, Ann . Arbor, Michigan
Revemel July 2s, 1bth

In continuing our study ${ }^{1}$ of substituent effeets on the biological activity of bradykinin a further series of six analogs has been prepared and tested in the guinea pig lung and on blood pressure." The analogs were synthesized by the stepwise clongation of the peptide chain as deseribed in carlier publications ${ }^{3}$ utilizing for the most part the p-nitrophenyl ester method. The intermediate peptides and the final products are listed in Table I. All of the peptides from the carbobenzoxyhexapeptide to the tricarbobenzoxynonapeptide were found to contain an O-acetyl group on the serinc hydroxyl as previously reported. ${ }^{4}$

The method of Filler and Novar was used for the preparation of m-trifluoromethylphenytalanime. The Nacetyl derivative was resolved into its optical isomers with s-thero-p-nitrophenyl-2-amino-1,3-propancdiol.

The biological activities of the six malogs are given in Table II. The result obtained for the 4 -sarcosince and the glycyl bradykinin are in the range of those reported by Schröder and Hempelf for these compounds: however, no details of preparation were given. The rexults of the $\bar{s}-1$-phenytamine amalog should be riewed with someskeptieism since even a small amount of the L isomer would lead to an erroncous interpretit tion of the data obtamed. ${ }^{1}$ Of considerable interest is the activity found for the 8-m-trifluoromethylphenylalmine :malog. This peptide is about 1.5 times :s active as bradykinin in lowering guinea pig blool pressure, but only one-half as active in the lung bronWhoconstrietion. This finding fends support to the receptor-site theory advaneed by Scherrer and aho would muport a view that different receptor sites are movere in the bromehoronstridive and hypotemine efferets observerd.

Experimental Section

m-Trifluoromethyl-L- and - $\left[\right.$-phenylaianine. $-\mathbf{T}_{4}$ il solution

 1drophenv-2-aminu-1,3-propanediol. 'The mixtme was wimed 11 effert sohntion and 300 nul wf ethy acetate was maded. A white solid crratalized was removed and dried; 36 g , rup 1,5 $186^{\circ},\left\{\alpha 2^{29} \mathrm{~b}-46^{\circ}\right.$ (, 2, metham, $)$. The mother lig(un was (evipurated 1 : 1 sumbll volinne and ethyl acetate was added giving :3 g of white sulid which was recrystillized from ethyid anetate montaining in small amomit of methand; $34 \mathrm{~g}, \mathrm{mp} 184-155^{\circ}$,
 free andils loy treamem with dilate HCl and extration with

[^1]Table I

Compound

Cbz-Sar-Phe-Ser-Pro-Phe-NO ${ }_{2}$-Arg- OCH_{3}
$\mathrm{Clz}_{-}-\mathrm{Pr}_{1}-\mathrm{Sar}-\mathrm{Ph}$-Ser-Pro-Phe-NO2-Arg-OClI ${ }_{3}$
$\mathrm{Cbz}-\mathrm{Pr}_{r}-$ Pro-Sar-Phe-Ser-Pro-Phe-NO $\mathrm{N}_{2}-\mathrm{Arg}-\mathrm{OCH}_{3}$
TriCbz-Arg-Pro-Pro-Sar-Phe-Ser-Pro-Phe-NO 2_{2}-Arg-OCll ${ }_{4}$
DiCbz-Arg-Pro-Pro-Sar-Phe-Ser-Pro-Phe-NO - -Arg
Arg-Pro-Pro-Sar-Phe-Ser-Pro-Phe-Arg-triacetate
$\mathrm{Cl}_{2}-5-\mathrm{NH}_{2} \mathrm{Val}$-Phe-Ser-Pro-Plee-NO $\mathrm{N}_{2}-\mathrm{Arg}-\mathrm{OCHI}_{3}$
Cbz-Pro-5-NH2Val-Phe-Pro-Ser-Phe-NO N_{2}-Arg-OCH
Chz-Pro-Pro-5-NH2 Val-Phe-Ser-Pro-Phc-NO O_{2}-Arg-OCH ${ }_{3}$
TriCbz-Arg-Pro-Pro-5-NH2Val-Phe-Ser-Pro-Phe-NO $\mathrm{N}_{2}-\mathrm{Arg}-\mathrm{OCl} \mathrm{I}_{2}$
DiCbz-Arg-Pro-Pro-5-NH2Val-Phe-Ser-Pro-Phe-NO - Arg
Arg-Pro-Pro-5-NH2Val-Phe-Ser-Pro-Phe-Arg-triacerate Cbz-D-Phe-Ser-Pro-Phe-N() $2_{2}-\mathrm{Arg}-\mathrm{OCH}_{3}$
Cbz -Gly-d-Phe-Ser-Pro-Pho-NO2-Arg-OCll ${ }_{3}$
Cbz--Pro-Gly-d-Ple-Ser-Pro-Phe-NO 2 -Arg-OCH:
$\mathrm{Cb} \%-\mathrm{Pro}-\mathrm{Pro}-\mathrm{Gly}-\mathrm{d}-\mathrm{Phe-Ser}-\mathrm{Pro}$-Pho-NO$-\mathrm{Arg}-\mathrm{OCH}_{3}$
TriCbz-Arg-Pro-Pro-Gly-D-Phe-Ser-Pro-Phe-NO 2_{2}-Arg-OCll ${ }_{3}$
DiCbz-Arg-Prı-Pro-Gily-d-Phe-Scr-Pro-Phe-NO $)_{z}-\mathrm{Arg}$
Arg-Pro-Pro-Cly-d-Phe-Ser-Pro-Phe-Arg-triacetate

Cbz-NO N_{2}-Arg-Pro-Pro-Cily-Gly-Phe-Ser-Pro-Phe-NO O_{2} - Arg
Arg-Pro-Pro-Gly-Gly-Phe-Ser-Pro-Phe-Arg-triacetate
Cbz-Gily-NO2-A1g-Pro-Pro-Aly-Phe-Ser-Pro-Phe-NO $\mathrm{O}_{2}-\mathrm{Arg}-\mathrm{OCl} \mathrm{C}_{3}$
Cbz-Gly-NO 2 -Arg-Pro-Pro-Gily-Phe-Ser-Pro-Phe-NOz-Arg
Gly-Arg-Pro-Pro-Aly-Phe-Ser-Pro-Phe-Arg-triacctrile

$\mathrm{Cloz-Pro-m}-\mathrm{CF}_{3} \mathrm{Phe}-\mathrm{NO}_{2}-\mathrm{Arg}_{-}$()ClI ${ }_{3}$
$\mathrm{Cbz}-\mathrm{Ph}-\mathrm{Ser}-\mathrm{Pr} 0-m-\mathrm{CF}_{3} \mathrm{Pl}_{2}-\mathrm{NO}_{2}-\mathrm{Arg}-\mathrm{OClI}$ Cbz-Cly-Phe-Ser-Pro-m-CF3 Plic-NO2-Arg-OCHf Chz-Pro-Cily-Phe-Ser-Pro-m-CF Cl_{i} Phe-NO O_{2}-Arg-OCIT CLz-Pru-Pro-Gly-Phe-Sur-Pro-m-CF Phe-NOz-Arg-OCll TriChz-Arg-Pro-Pro-Aly-Phe-Ser-Pro-m-CF ${ }_{3}$ Phe-NO $_{2}-$ Arg-OClI

Formila

	$\mathrm{C}_{46} \mathrm{H}_{189} \mathrm{~N}_{10} \mathrm{O}_{13}$
	$\mathrm{C}_{51} \mathrm{H}_{6 ;} \mathrm{N}_{1} \mathrm{O}_{4,4}$
	$\mathrm{C}_{56} \mathrm{H}_{72} \mathrm{~N}_{10} \mathrm{O}_{15}$
	$\mathrm{C}_{78} \mathrm{H}_{96} \mathrm{~N}_{16} \mathrm{O}_{417}$
	$\mathrm{C}_{67} 1 \mathrm{I}_{86} \mathrm{~N}_{16} \mathrm{O}_{17} \cdot \mathrm{HL}_{8} \mathrm{O}$
	$\mathrm{C}_{37} \mathrm{H}_{87} \mathrm{~N}_{1.7} \mathrm{O}_{17} \cdot 411.0$
	$\mathrm{C}_{48} \mathrm{H}_{62} \mathrm{~N}_{10} \mathrm{O}_{13}$
	$\mathrm{C}_{33} \mathrm{I}_{69} \mathrm{~N}_{11} \mathrm{O}_{41}$
	$\mathrm{C}_{68} \mathrm{H}_{76} \mathrm{~N}_{12} \mathrm{O}_{6}$
	$\mathrm{C}_{80} \mathrm{H}_{120} \mathrm{~N}_{16} \mathrm{O}_{30}$
	$\mathrm{C}_{6.4} \mathrm{H}_{19} \mathrm{~N}_{16} \mathrm{O}_{17} \cdot 11.0$
	$\mathrm{C}_{41} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{11} \cdot 0.5 \mathrm{H}_{12} \mathrm{O}^{4}$
	$\mathrm{C}_{45} \mathrm{H}_{561} \mathrm{~N}_{10} \mathrm{O}_{43}$
	$\mathrm{C}_{514} \mathrm{I}_{63} \mathrm{~N}_{11} \mathrm{O}_{14}$
	$\mathrm{C}_{77} \mathrm{IL}_{41} \mathrm{~N}_{16} \mathrm{O}_{20}$
	$\mathrm{C}_{66} \mathrm{H}_{84} \mathrm{~N}_{16} \mathrm{O}_{17} \cdot 11 \mathrm{C}_{2}$
	$\mathrm{C}_{\overline{j 6}} \mathrm{I}_{85} \mathrm{~N}_{15} \mathrm{O}_{17}$
	$\mathrm{C}_{3,4} \mathrm{H}_{66} \mathrm{~N}_{62} \mathrm{O}_{2}$
	$\mathrm{C}_{63} \mathrm{H}_{85} \mathrm{~N}_{18} \mathrm{O}_{12} \cdot 21 \mathrm{I}_{2} \mathrm{O}$
	$\left.\mathrm{C}_{64} \mathrm{H}_{7!} \mathrm{N}_{18} \mathrm{O}_{48} \cdot 11_{20}\right)^{10}$
	$\mathrm{C}_{58} \mathrm{I}_{88} \mathrm{~N}_{16} \mathrm{O}_{15}$
	$\mathrm{C}_{6.1} \mathrm{H}_{84} \mathrm{~N}_{18} \mathrm{O}_{19}$
	$\mathrm{C}_{6} . \mathrm{H}_{80} \mathrm{~N}_{18} \mathrm{O}_{18}$
	C:8 $\mathrm{H}_{48} \mathrm{~N}_{16} \mathrm{O}_{18} \cdot 31 \mathrm{l}_{2} \mathrm{O}$
	$\mathrm{Cu}_{6}\left[\mathrm{II}_{4} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{7}\right.$
	$\mathrm{C}_{70} \mathrm{H}_{36} \mathrm{I}_{3} \mathrm{~N}_{7} \mathrm{O}_{3}$
	$\mathrm{C}_{4:} \mathrm{HI}_{10} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{11}$
	$\mathrm{C}_{61} \mathrm{H}_{67} \mathrm{I}_{3} \mathrm{~N}_{10} \mathrm{O}_{6}$
	$\mathrm{C}_{78} \mathrm{I}_{973} \mathrm{~F}_{3} \mathrm{~N}_{16} \mathrm{O}_{34}$

$\alpha \mid \mathrm{p}, \mathrm{deg}$

1. DM
-4
-4.9
-48.
-70
-66
$-62 . \pi$
$-81.2(1: 1,11,0)$
-51
-60
-65
-55.6
-51.4
$-7 \mathrm{~S} .8(\mathrm{r} 1, \mathrm{IL} .0)$
-31
$-\dddot{34}$
$-.54$
$-4!$. 1

- 5
-54
$-7 \mathrm{Sc}(\mathrm{c} 1,11,0)$
-58.5
-52
$-4: 5$
-66 (c 1, HLO$)$
-61
-51.1
$-5.5(c 1,11.0)$
$\begin{array}{ll}-10 & 75-81 \%\end{array}$
-3
-35
-51
-60
-54
-50
$-7!)\left(c 1,11_{2} O\right)$
$\mathrm{M}_{1},{ }^{\circ} \mathrm{C}$
184-189
$120-125$ 140-145 $120-125$ $160-165$

190 -1! $\%$ 211-215 185-190 155-157 15i-160 $140-146$ $50-15:$
85120
105-13:3
$125-140$ 120-125 $150-200$ 17:3-153 233-234 200)-211 $17(-175$
141)-150
$180-185$
$85-100$
160-162
$20)(-210$
195-1:197
$148 \cdot 152$
130-140
$175 \cdot 1810$

- Caled, \quad N

C- Foun
N

61	6.10	14.6%	615.35	5.96	14.80
58.00	6.20	14.65	57.24	6.06	14
58.20	6.29	14.57	58.06	6.13	14.
$5!9.40$	6.13	14.20	58.81	6.28	14
57.15	6.25	15.93)	57.16	6.26	16
51.60	7.23	15.87	51.71	7.20	16.
58.41	6.3	14.21	58.18	6.13	14
58.65	6.43	14.22	58.65	6.4)	14.
58.98	6.47	14.22	58.98	6.45	14.
59.75	6.96	13.97	5!). 16	6.20	14.
57.84	6.40	15.65	57.65	6.36	15.
55.15	7.14	16.40	54.96	7.00	16.
57.60	6.25	14.74	57. 67	6. 19	14
57.20	5.97	14.83	57.37	6.05	14
57.62	6.09	14.78	57.83	5.9)	14.
57.99	6.19	14.76	58.63	6.29	14
59.14	6.06	14.34	51). 23	6.27	14
56.96	6.23	16.16	57.05	6.29)	16
54.00	6.90	16.90)	53. 76	7.07	17
56.82	6.05	15.29	56.88	6.04	15
52.75	6.25	17.62	52.75	6. 25	17.
53.05	6.01	18.56	52.97	5.99	18.0
53.69	6.83	17.28	52.37	6.87	
. 54.15	6.06	18. 04	53.85	6.16	17
53.72	6.01	18.80	53. 60	6.21	18
51.54	7.01	16.58	51.75	6.58	16
51.54	5.12	14.4i	51.62	5.22	14
53. 02	5. 34	14.4;	53.29	5.58	14.
55.20	5.52	13.80	55.5. 54	5.69	13
54.5.3	5. 47	13.83	54.46	5.57	13
55. 18	5.63	13.85	5r. 02	5.61	14.
55.71	5.76	13.!3	54.90	5.75	13.1
57.41	5.74	13.74	56.93	5.81	13.5
53.81	(6.10)	14.!9	54.21	6.02	15.0
50.25	6.66	15.4\%	51.61.	6.79	1.5

'Tibus II

लhyl areate. Thle ethyl aretate midithe were evapmateri,

 The precipitate were renmed, washed with (wh water, : dnd

Carbobenzoxy-m-trifluoromethyl-i-phenylalanine.--I'he reacinn of 8.5 g (0.0355 mole) of m-trifluormethyl-L-phenylatandine

 Fomind: C, isent H, 4.41; , :8.6!.

Carbobenzoxy- m-trifluoromethyl-1-phenylalanine p-nitro-

Acknowledgment.- Wi: wish to thank Mr. ('. F. (hikds and asoociates for the mieromalyse and Dr. J. M. Vandenbelt and arsociates for the rotations reported.

2,8 -Bis(substituted amino)phenothiazine 5,5-Dioxides ${ }^{1}$

Pinti-h Cmex win ('. C. Chexti

The synthesis of bis(t-ammophenyl) sulfone (ta, t.t'-(liaminodiphenyl sulfone, DDS) and its aectylated derivative, Ib (DADDS), wat reported in 1908." Compounds of this type wore found to poseses anti--terepococeal activity (approximately 30 times that of sulfanifamide) and have been used in the treatment of sonne common barterial infections disenses: Later, DIS' and its derivatives were recognized as being useful in the treatment of tuberculosis ${ }^{4}$ and leprosy, ${ }^{5}$ During the Second World War: the antimalarial activity of a

[^2]number of compounds in this series was unveiled in serecming processes. ${ }^{6}$ In 1960, Arehibald and hons reported the use of DDS in the treathent of fabeparma and guartan makra in native living in hyporendemic areas. 'Tho importance of bos and redated rompounds hate recently been demonstrated by the fand that many whorogune-resiocant strans of matame parasites did tot show eros-resistane to bl)s. Structure activity relationship studere reveakel thati. in gemeral. The :utimatarial activity of compomals of this type is low when teriary amino grompe or hom-hydrogen-bonding abstitucnts are present at the para (t and f^{\prime}) positions or when the p-imino functions: :ne changed to the arta (3 and 3') prestions. (On the other hamd. changing to small secondary ammo or acytamido gronpe at the paro positions ${ }^{4}$ and on eretam sulstith-
 and may ovencmanoentimabarial activity

$\mathrm{I} \mathrm{a}_{1}, \mathrm{R}_{2}, \mathrm{R}_{2}=\mathrm{H}$
$\mathrm{b}, \mathrm{R}_{i}=\mathrm{H}_{;} \mathrm{R}_{z}=\mathrm{CH}_{3} \mathrm{CO}$

Two ‥t-bis(substitnted amino)diphemyhncthames (ILa and IIb) were shown to posess antimatarial acdivity in avimn mataria. Bilhnan, ot al., ${ }^{15}$ proposed that these compounds could actually be considered :s precursors of the arridine derivative (IV), sinee it has been reported that compommes of type II coukd conercivably be deaminated to wive the intermediate dily droarridines (III). which ate readily oxidized by oxyeren or forrie chloride to form IV. ${ }^{\text {a }}$

III

IV

I number of phenothiazines are known to dieptay it varicty of physiological activities. Methylene blue, a tetranethyl derivative of Lauth's violet (3,6-diaminophenothiazonium (hloride), was found to have some
(6) F . Y. Wiselogle, "A Surrey of Antimalarial Drugs, $19+1$-10.4 ," Vol. II, Part 1, J. W. Ldwards, Ann Arbor, Mich., 1946, pp T60-7ifi, 89F. 896.
(T) M. M. Arebibald ath (\therefore. M, Ross, J. Trop. Med. $/ 74 g, 63,25$ (10to).
(8) Cf. (a) A. B. G. Laing, ibid., 68, 25l (19(b); Hi) W. Feners, Exph. Phusitol., 17, 80 (1965).
(9) DDS, but not quinne, thormpane, qumatime, or promethathme, inlibits competitively the incorporation of p-aminobenzuic aciul imo folic acid. See ref $10-13$ and other literature cited therein.
(10) H. Heymanu and L. F. Fieser, J. Am. Chem. Soe., 67, 19Ty (1d-ki).
(11) J. Greenberg, J. Phurmacol. Expll. Therap., 97, 238 (1949).
(12) A. Bishop, Parasitology, 53, 10 (1963).
(13) J. Hill, Exptl. Chemotherapy, 1، 347 (1963).
it) F. F. Elslaper and D. F. Worll. Nutwe, 206, 6S0 1960),

[^0]:
 13) Biologicol testiog was berformed at the Foborime Laburatory, Malisom, llis.
 (It) (a) R. Deghenghi, C. Revesz, and R. Gaudry, J. Med. Chem., 6, 301 (1!003); (b) M. J. Weiss, R. E. Sclaub. J. F. Yoletto, G. R. Allen, Jr., and ('. J. Custia, Chem. Itd. (Lundon), 118 (1963).
 (1s) Melting points were deturotinel in copillary tubes on a Mel-Temp apmatats ant are homeorecterl. Elemental analyses were performed by
 suedra were determined un a lerkin- Whmer Infracord Model 13t. Nom
 buphed iu parts bur million downfield from a tetratacthysitane intermal slambiral.

[^1]: MeCarthy, and 1). I. Potter, Biochemistry. 4, 190 (196\%).
 (2) The authors are indebed to Dr. H. O. J. Collier and associates for the biological testing of the analogs ill the guinea pig.
 (3) E. D. Nicolaides and H. A. DeWald, J. Org. Chem., 26, 38 :1 (19611): 11. A. DeWald, M. K. Craft, and E. D. Nicolaides, J. Men. Chem., 6, itl (1963); E. D. Nicolailles, M. K. Craft, and H. A. DeWah, ibit, 6, 324 1146:31.

 (0) R. Filer athl II Novar bin, 25, 73:3 (1960).
 (6) K. Sehröder :anl R. Hempul, Experientia, 20, 52) (1901).
 \therefore R R. A. Scherrer, Mbstracts uf Hue (9th Nitionel Medicinai Chmentry Smprisum, Minde:mplis, Mimb., 1964.

[^2]: (1) This investightion was shmpored by the Walter leed Amy Institute of Resumh (WRADR). Wiher Reed Aros Medionl Center, Merartment of

 1! in) H. H. Feldmamn, H. ('. Himshaw, and H. E. Noses, Pror. Stuff

 L. potse. 22, 3\% (19\%).

